

DR. NAMMER PhD ANATOMY, HISTOLOGY AND EMBRYOLOGY

Parts of the skeletal system

- Bones (skeleton)
- Cartilage
- Joints: hold bones together
 & mobility
- Ligaments & Tendons

Fascicle Arrangement Organization of Skeletal Muscle

Fibers

• Four patterns of fascicle

organization

- Parallel
- Convergent
- Pennate
- Circular

Fascicle Body (belly) **Cross section**

(a) Parallel muscle (Biceps brachii muscle)

(c) Unipennate muscle (Extensor digitorum muscle) (d) Bipennate muscle (Rectus femoris muscle)

(e) Multipennate muscle (Deltoid muscle)

o Levers

 Mechanically, each bone is a lever (a rigid, moving structure)

• And each joint a fulcrum (a fixed point)

Muscles provide applied force (AF)

Required to overcome resistance (R)

- Function of a lever is to change
 - Direction of an AF
 - Distance and speed of movement produced by an AF
 - Effective strength of an AF
- The Three Classes of Levers
 - Depend on the relationship between applied force, fulcrum, and resistance
 - First class, second class, and third class

First Class Lever

Second Class Lever

(b) Second-class lever

completed

Third Class Lever

(c) Third-class lever

Movement completed

Types of Muscle--Actions

- Prime mover (Agonist) muscle with the major responsibility for a certain movement
- Antagonist muscle that opposes or reverses a prime mover
- Synergist muscle that aids a prime mover in a movement and helps prevent rotation
- Fixator stabilizes the origin of a prime mover

Naming Skeletal Muscles

Direction of Muscle Fibers

- Relative to the Midline
- **RECTUS** = parallel to the midline
 - Rectus Abdominus
- **TRANSVERSE** = perpendicular to midline
 - Transverse Abdominus
- **OBLIQUE** = diagonal to midline
 - External Oblique

Location Aponeurosis Frontalis Occipitalis

• Structure near which muscle is found

- FRONTALIS = near
 FRONTAL bone
- <u>OCCIPITALIS</u> = near OCCIPITAL bone

Size

- Relative Size of Muscle
- MAXIMUS = largest
 - Gluteus Maximus
- **MEDIUS** = middle
 - Gluteus Medius
- MINIMUS = smallest
 - Gluteus Minimus
- LONGUS = longest
 - Fibularis Longus
- **BREVIS** = short
 - Fibularis **Brevis**
- **TERTIUS** = shortest
 - Fibularis Tertius

Number of Origins

sde

- Number of tendons of origin
- BICEPS = Two
 - Biceps Brachii
 - Biceps Femoris
- TRICEPS = Three
 - Triceps Brachii
- QUADRICEPS = Four
 - Quadriceps Femoris

Shape

• Relative Shape of the Muscle

• DELTOID =

triangular shape Δ

• TRAPEZIUS =

trapezoid shape **SERRATUS** = sawtoothed ≈

• **RHOMBOIDEUS** = rhomboid shape **?**

• TERES = round O

Origin & Insertion

- Origin attachment to an immoveable bone
- Insertion attachment to a movable bone
- ILIO COSTALIS = attaches to the ilium & ribs (costal = ribs)

Action

NAME	ACTION	EXAMPLE
FLEXOR	Decrease angle at a joint	Flexor Carpi Radialis
EXTENSOR	Increase angle at a joint	Extensor Carpi Ulnaris
ABDUCTOR	Move bone away from midline	Abductor Pollicis Longus
ADDUCTOR	Move bone toward midline	Adductor Longus
LEVATOR	Produce upward movement	Levator Scapulae
DEPRESSOR	Produce downward movement	Depressor Labii Inferioris
SUPINATOR	Turn palm upward/anterior	Supinator
PRONATOR	Turn palm downward/posterior	Pronator Teres

MUSCLES CAN WORK AS:

- Flexors contracting to bend our joints.
- Extensors contracting to straighten joints.
- Prime movers (agonists) contracting to start a movement.
- Antagonists relaxing to allow movement to take place.
- Fixators contracting to give the working muscles a firm base.
- Synergists stabilising the area around the prime mover and fine tuning our movement.

HOW ARE MUSCLES ATTACHED TO BONES?

Muscles are usually attached to 2 or more different bones.

The muscle fibres end in a strong, white flexible cord, called a TENDON. At the bone, the fibres of the tendon are embedded in the PERIOSTIUM

of the bone. This anchors the tendon strongly and spreads the force of the Contraction

REMEMBER:

Tendons join muscle to bone. Ligaments join bone to bone.

Movement of Muscles

- Origin: the attachment of the muscle to the bone that remains stationary
- Insertion: the attachment of the muscle to the bone that moves
- Belly: the fleshy part of the muscle between the tendons of origin and/or insertion

Movement of skeletal muscle

- These muscles move when the brain sends messages to the muscle
- Always work in pairs
- 2 movements of skeletal muscle
 - Contraction (shorten)
 - Extension (lengthen)

Categories of skeletal muscle actions

Categories <u>Actions</u>

- Extensor
- Flexor
- Abductor
- Adductor
- Levator
- Depressor
- Rotator
- Sphincter

Increases the angle at a joint Decreases the angle at a joint Moves limb away from midline of body Moves limb toward midline of body Moves insertion upward Moves insertion downward Rotates a bone along its axis Constricts an opening

Naming Skeletal Muscles

- Location of the muscle
- Shape of the muscle
- Relative Size of the muscle
- Direction/Orientation of the muscle fibers/ cells
- Number of Origins
- Location of the Attachments
- Action of the muscle

Muscles Named by Location

Epicranius

(around cranium)

 Tibialis anterior (front of tibia)

Naming Skeletal Muscles

Shape:

- deltoid (triangle)
- trapezius (trapezoid, 2 parallel sides)
- serratus (sawtoothed)
- rhomboideus (rhomboid, 4 parallel sides)

Rhomboideus major

orbicularis and sphincters (circular) Serratus anterior

Muscles Named by Size

maximus (largest)
minimis (smallest)
longus (longest)
brevis (short)
major (large)
minor (small)

Psoas minor Psoas major

Muscles Named by Direction of Fibers

- Rectus (straight)

 parallel to long axis
- Transverse
- Oblique

External oblique

Muscles Named for Number of Origins

Biceps brachii

- Biceps (2)
- Triceps (3)
- Quadriceps (4)

Muscles Named for Origin and Insertion

Sternocleidomastoid originates from sternum and clavicle and inserts on mastoid process of temporal bone

Arrangement of Fascicles

Parallel

- strap-like
- ex: sartorius

Fusiform

- spindle shaped
- ex: biceps femor

Arrangement of Fascicles

Pennate

"feather shaped"

Unipennate

 ex: extensor digitorum longus

Bipennate

ex: rectus femoris

Multipennate

ex: deltoid

Arrangement of Fascicles

- Convergent
 - ex: pectoralis major

Circular

- sphincters
- ex: orbicularis oris

Introduction

- Bone is mineralized dense connective tissue
- Made up of few cells in mineralized matrix
- Consists of 30-40 % of our body weight.
- Dynamic in nature

Parts of bones

- Epiphysis secondary centers
- Pressure epiphysis
- Traction epiphysis
- Atavistic epiphysis
- Diaphysis primary center
- Strongest part of bone

- Bone shapes
- ➤ Long bones
- Short bones
- ➤ Flat bones
- ➤Irregular bones
- Sesamoid bones
- Pneumatic bones
- Accessory bones

Compact and Spongy Bone

- Compact bone located where stresses are limited in direction.
- Spongy bone located where stresses are weaker or multi-directional.

Classification of Joints

□ Function:

- Synarthroses = no/little movement
- Amphiarthroses = slight movement
- Diarthroses = great movement

Joints by Functional Classification

Туре	Movement	Example
Synarthrosis	None	Sutures, Teeth,
	(minimal)	Epiphyseal plates,
		1 st rib and costal cart.
Amphiarthrosis	Slight	Distal Tibia/fibula
		Intervertebral discs
		Pubic symphysis
Diarthrosis	Great	Glenohumeral joint
		Knee joint
		TMJ

Joint Classification

□ Structure

- Cartilagenous
 - □ Synchondrosis: connected by hyaline cartilage (synarthroses)
 - □ Symphysis: connected by fibrocartilage (amphiarthroses)
- Fibrous
 - □ Sutures: connected by short strands of dense CT (synarthroses)
 - □ Syndesmoses: connected by ligaments (varies)
 - □ Gomphosis: peg in socket w/short ligament (synarthroses)
- Synovial (diarthroses)

Joints by Structural Classification

Structure	Туре	Example
Cartilagenous	Synchondrosis	Epiphyseal plates
	Symphysis	Intervertebral discs
Fibrous	Sutures	Skull
	Syndesmoses	Distal Tibia/fibula
	Gomphosis	Teeth in sockets
Synovial		Glenohumeral joint
		Knee joint
		TMJ

Components of SYNOVIAL JOINTS: (Structural Joint Classification continued)

- Articular cartilage: hyaline; covers ends of both bones articulating
- □ **Synovial (joint) cavity**: space holding synovial fluid
- □ Articular capsule: Made of 2 layers
 - Fibrous: external, dense CT for strength
 - Synovial membrane: internal, produces synovial fluid
- Synovial fluid: viscous; lubricates and nourishes; contained in capsule and articular cartilages
- □ **Reinforcing ligaments:** extracapsular/intracapsular
- □ **Nerves + vessels**: Highly innervated, Highly vascular
- Meniscus (some): fibrocartilage; improves the fit of 2 bones to increase stability

Synovial Joint

Bursae & Tendon Sheaths

Bursae: flat, fibrous sac w/synovial membrane lining **Tendon Sheaths:** elongated bursae that wraps around tendons 3 Factors in Joint Stability:

- Muscle Tone
- Ligaments
- Fit of Articular Surface

Joint Shapes

- Hinge: cylindrical end of 1
 bone fits into trough shape of other
 - angular movement-1 plane (eg)
 elbow, ankle, interphalangal
- Plane: articular surface in flat plane
 - Short gliding movement
 - (eg) intertarsal, articular processes of vertebrae

Joint Shapes

- **Condyloid**: egg-shape articular surface + oval concavity
 - side-to-side, back+forth movement
 - (eg) metacarpophalangeal (knuckle)
- **Pivot**: round end fits into ring of bone + ligament
 - rotation on long axis
 - (eg) prox. radius/ulna, atlas/dens

Joint Shapes

- Saddle: articular surface both concave + convex
 - side-to-side, back-forth movement
 - (eg) carpometacarpal jt of thumb
- Ball + Socket: spherical head + round socket
 - multiaxial movement
 - (eg) shoulder, femur

!Muscles!

Function: 1) movement
2) maintain posture
3) joint stability
4) generate heat

!Muscles!

Special Features of Muscle

- □ **Contractibility** = cells generate pulling force
- Excitibility = nervous impulses travel through muscle plasma membrane to stimulate contraction
- Extensibility = after contraction muscle can be stretched back to original length by opposing muscle action
- Elasticity = after being stretched, muscle passively recoils to resume its resting length

Muscle System: uses levers to move objects

- How it works: A rigid bar moves on fixed point when a force is applied to it, to move object
- \Box Lever = rigid bar = bone
- □ Fulcrum = fixed point = joint
- □ Effort = force applied = muscle contraction
- □ Load = object being moved = bone

Movements of Muscles

- **Extension:** increasing angle between body parts
- □ Flexion: decreasing angle between body parts
 - Dorsiflexion vs. Plantarflexion
 - Inversion vs. Eversion
- □ Abduction: moving away from the median plane
- □ Adduction: moving towards the median plane
- **Rotation:** moving around the long axis
- □ Circumduction: moving around in circles

Movements of Muscles

Elevation: lifting body part superiorly
Depression: moving body part inferiorly
Supination: rotating forearm laterally
Pronation: rotating forearm medially
Protraction: Anterior movement
Retraction: Posterior movement

Muscle Basics to Remember

3 Types: Skeletal, Cardiac, Smooth
Origin vs. Insertion

- Direct vs. Indirect Attachments
 - direct = right onto bone
 - indirect = via tendon/aponeurosis

□ more common

- \Box leave bony markings = tubercle, crest, ridge, etc.
- □ Sometimes attach to skin

Functional Muscle Groups

 Agonist = primary mover of a muscle, major response produces particular movement

 (eg) biceps brachii is main flexor of forearm

 Antagonists = oppose/reverse particular movement, prevent overshooting agonistic motion
 (eg) triceps brachii is antagonist to biceps brachii

Functional Muscle Groups

- Synergists = muscles work together, adds extra force to agonistic movement, reduce undesirable extra movement
 - (eg) muscles crossing 2 joints
- □ Fixators = a synergist that holds bone in place to provide stable base for movement
 - (eg) joint stablilizers

Naming Muscles

- □ Location: (eg) brachialis = arm
- □ Shape: (eg) deltoid = triangle
- □ Relative Size: (eg) minimus, maximus, longus
- Direction of Fascicles: (eg) oblique, rectus
- □ Location of Attachment: (eg) brachioradialis
- □ Number of Origins: (eg) biceps, quadriceps
- □ Action: (eg) flexor, adductor, extensor

Arrangement of Muscle Fibers

Parallel: long axis of fascicles parallel to axis of muscle; straplike (eg) biceps, sternocleidomastoid

Convergent: O = broad, I = narrow, via tendon; fan or triangle shaped (eg) pectoralis major

Circular: fascicles arranged in concentric circles;
 sphincter (eg) around mouth

Arrangement of Muscle Fibers

Pennate: fascicles short + attached obliquely to tendon running length of muscle; featherlike

- Unipennate = fascicles insert on only 1 side
 - (eg) flexor pollicis longus
- Bipennate = fascicles insert both sides
 - (eg) rectus femoris
- Multipennate = many bundles inserting together
 - □ (eg) deltoid

Arrangements of Muscle Fascicles

